Art
J-GLOBAL ID:202002216534274798   Reference number:20A0553725

On algorithms to obtain linear determinantal representations of smooth plane curves of higher degree

高次の平滑な平面曲線の線形行列式表示を得るためのアルゴリズムについて
Author (3):
Material:
Volume: 11  Page: 9-12(J-STAGE)  Publication year: 2019 
JST Material Number: U0115A  ISSN: 1883-0617  Document type: Article
Article type: 短報  Country of issue: Japan (JPN)  Language: ENGLISH (EN)
Thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.

Semi thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.

Author keywords (4):
JST classification (4):
JST classification
Category name(code) classified by JST.
System and control theory in general  ,  Graphic and image processing in general  ,  Numerical computation  ,  Theory of computation 
Reference (17):
  • 1) A. Beauville, Determinantal hypersurfaces, Dedicated to W. Fulton on the occasion of his 60th birthday, Michigan Math. J., 48 (2000), 39-64.
  • 2) I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, 2012.
  • 3) L. Galinat, Orlov's equivalence and maximal Cohen--Macaulay modules over the cone of an elliptic curve, Math. Nachr., 287 (2014), 1438-1455.
  • 4) D. Plaumann, B. Sturmfels and C. Vinzant, Quartic curves and their bitangents, J. Symbolic Comput., 46 (2011), 712-733.
  • 5) T. Fisher and R. Newton, Computing the Cassels--Tate pairing on the 3-Selmer group of an elliptic curve, Int. J. Number Theory, 10 (2014), 1881-1907.
more...
Terms in the title (4):
Terms in the title
Keywords automatically extracted from the title.

Return to Previous Page