Rchr
J-GLOBAL ID:202201017779043526   Update date: Jun. 24, 2024

Yoshiyasu Toru

ヨシヤス トオル | Yoshiyasu Toru
Affiliation and department:
Job title: Lecturer
Homepage URL  (1): https://sites.google.com/site/toruyoshiyasu/
Research field  (1): Geometry
Research keywords  (4): h-principle ,  symplectic geometry ,  contact geometry ,  embedding
Research theme for competitive and other funds  (2):
  • 2024 - 2029 Theory of holomorphic curves, the development of Floer theory and studies on contact and symplectic structures
  • 2024 - 2028 測度論的ホモトピー原理
Papers (4):
  • Yakov Eliashberg, Noboru Ogawa, Toru Yoshiyasu. Stabilized convex symplectic manifolds are Weinstein. Kyoto Journal of Mathematics. 2021. 61. 2
  • Toru Yoshiyasu. On Lagrangian embeddings of closed nonorientable 3-manifolds. Algebraic and Geometric Topology. 2019. 19. 4. 1619-1630
  • Toru Yoshiyasu. On Lagrangian embeddings into the complex projective spaces. International Journal of Mathematics. 2016. 27. 05. 1650044-1650044
  • Naohiko Kasuya, Toru Yoshiyasu. On Lagrangian embeddings of parallelizable manifolds. International Journal of Mathematics. 2013. 24. 09. 1350073-1350073
MISC (1):
  • 吉安徹. ラグランジュキャップによるラグランジュ部分多様体の構成. RIMS講究録. 2021. 2175. 1-13
Education (3):
  • 2011 - 2015 The University of Tokyo Graduate School of Mathematical Sciences
  • 2009 - 2011 The University of Tokyo Graduate School of Mathematical Sciences
  • 2005 - 2009 Chiba University Faculty of Science Department of Mathematics and Informatics
Work history (6):
  • 2022/04 - 現在 Kyoto University of Education
  • 2021/04 - 2022/03 Kyoto University Research Institute for Mathematical Sciences
  • 2018/04 - 2021/03 Kyoto University Graduate School of Medicine Center for Genomic Medicine
  • 2017/04 - 2018/03 Hokkaido University Institute for the Advancement of Higher Education
  • 2016/04 - 2017/03 The University of Tokyo Graduate School of Mathematical Sciences
Show all
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page