Rchr
J-GLOBAL ID:202301002008130460   Update date: Nov. 23, 2024

Emura Takeshi

エムラ タケシ | Emura Takeshi
Affiliation and department:
Other affiliations (1):
Homepage URL  (1): https://sites.google.com/view/statistician-takeshi
Research keywords  (8): Reliability Engineering ,  Ridge regression ,  Left-truncation ,  Dependent censoring ,  Surrogate endpoint ,  Survival analysis ,  Copula ,  Competing risk
Research theme for competitive and other funds  (3):
  • 2020 - 2025 New Frontiers of Survival Analysis: Developments and Applications of Statistical Methodologies in Cancer Immunotherapy
  • 2022 - 2025 Generalized linear mixed models for copula-based bivariate survival analysis
  • 2013 - 2018 Development on statistical inference for matrix-valued statistics
Papers (90):
  • 江村剛志, 古川恭治. フレイルティモデル -生存分析におけるハザードのランダム効果. 計量生物学. 2024. 45. 2. 215-245
  • Hirofumi Michimae, Takeshi Emura, Atsushi Miyamoto, Kazuma Kishi. Bayesian parametric estimation based on left-truncated competing risks data under bivariate Clayton copula models. Journal of Applied Statistics. 2024. 51. 13. 2690-2708
  • Li-Hsien Sun, Yu-Kai Wang, Lien-Hsi Liu, Takeshi Emura, Chi-Yang Chiu. Change point estimation for Gaussian time series data with copula-based Markov chain models. Computational Statistics. 2024
  • Emura Takeshi, Oba Koji. Evaluation of Time-to-event Surrogate Endpoint Endpoint -Meta-analytic Approach-. Japanese Journal of Biometrics. 2024. 45. 1. 67-85
  • Simon M.S. Lo, Ralf A. Wilke, Takeshi Emura. A semiparametric model for the cause-specific hazard under risk proportionality. Computational Statistics & Data Analysis. 2024. 195. 107953-107953
more...
MISC (10):
  • 中薗孝輔, 魚住龍史, 江村剛志. コピュラモデルによる相関のある生存時間解析:SASプログラムの開発. SASユーザー総会論文集. 2024
  • Emura Takeshi, Hasegawa Takahiro, Taguri Masataka, Gosho Masahiko. Special Section : Survival Date Analysis. Japanese Journal of Biometrics. 2024. 45. 1. 1-1
  • 江村剛志, 松本晃太郎, 魚住龍史, 道前洋史. 高次元・スパースな線形モデルにおける一般化リッジ回帰と R パッケージ「g.ridge」. 2024年度日本計量生物学会年会, 予稿集. 2024
  • 江村剛志, 道前洋史. パラメトリック潜在故障時間コピュラモデルに基づく左側切断・競合リスクデータによるベイズ推定. 2024年度応用統計学会年会, 予稿集. 2024
  • The cumulative distribution function of the pretest estimator and Wald confidence interval for the mean of the normal distribution. 2023. 58. 1-37
more...
Books (4):
  • Copula-Based Markov Models for Time Series Parametric Inference and Process Control
    Springer 2021 ISBN:9789811549977
  • Survival analysis with correlated endpoints : joint frailty-copula models
    Springer 2019 ISBN:9789811335150
  • Analysis of doubly truncated data : an introduction
    Springer 2019 ISBN:9789811362408
  • Analysis of survival data with dependent censoring : copula-based approaches
    Springer 2018 ISBN:9789811071638
Lectures and oral presentations  (22):
  • 従属打ち切りの下での治療(処理)効果推定のための要因分析 ~ コピュラによる方法 ~
    (電子情報通信学会 信頼性研究会 2024)
  • 生存時間解析における代替性
    (第22回バイオ統計学フォーラム 2024)
  • 二変量生存データ解析のためのロバストな 2 パラメーターBB1コピュラモデル
    (2024年度統計関連学会連合大会 2024)
  • Survival Prognostic Analysis with Copula-Graphic Estimator for Dependent Censoring
    (International Conference for Statistics and Data Science (ICSDS) 2024, Taiwan 2024)
  • Introduction to copulas - Copulas and Survival Statistical Learning -
    (Department Spring Seminar 2024 (Statistics & Data Science,PKNU), Korea 2024)
more...
Committee career (23):
  • 2024/09 - 現在 Co-chair, The 8th International Conference on Econometrics and Statistics (EcoSta 2025)
  • 2024/09 - 現在 Associate Editor, Lifetime Data Analysis
  • 2024 - 現在 日本統計学会 国際関係委員
  • 2024 - 現在 Guest Editor: Mathematics, Special Issue: Sequential Sampling Methods for Statistical Inference
  • 2023/12 - 現在 The 18th International Joint Conference on CFE-CMStatistics 2024 Scientific Program Committee
Show all
Awards (9):
  • 2023 - Axioms Axioms 2023 Outstanding Reviewer Award
  • 2022 - Mathematics Mathematics 2022 Outstanding Reviewer Award
  • 2019 - 國立中央大學 學術研究傑出獎
  • 2018 - 國立中央大學 學術研究傑出獎
  • 2018 - Ta-You Wu Memorial Award Ministry of Science and Technology (MOST), Taiwan
Show all
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page