抄録/ポイント:
抄録/ポイント
文献の概要を数百字程度の日本語でまとめたものです。
部分表示の続きは、JDreamⅢ(有料)でご覧頂けます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。
多項式回帰モデルは,単純な線形回帰モデルに比べて複雑な関係を表現できるモデルであり,様々な予測問題に活用されている.また,複雑な処理を行う機械学習モデルに比べて,高い解釈性を持つという点でも有用なモデルであると考えられる.しかし,多変量の多項式回帰モデルでは,次数が大きくなると変数の数が指数的に増大するため,適切な説明変数の選択が必要である.従来,多変量多項式回帰モデルに対してスパース推定を用いて,効率的に高次の項の推定を可能にするアルゴリズムが提案されている.それらの1つであるSPORE-LASSOは,元の説明変数にLASSOを適用して一部の変数を取り出し,少数の説明変数に任意の次数の多項式展開を行って構築した多項式回帰モデルに対して,再度スパース推定を行うアルゴリズムである.その結果,全ての説明変数を考慮せず,多項式回帰モデルに対する効率的なパラメータ推定を実現している.しかし,従来のアルゴリズムは,最大次数を固定する必要がある.故に,最大次数を小さく設定すると真の構造を捉えることができなくなってしまい,大きく設定した場合には上述のように,変数の数が指数的に増加してしまうという問題を抱えている.そこで本稿では,最大次数が未知の多項式回帰モデルに対し,スパース推定を行う新たなアルゴリズムを提案し,人工データによるシミュレーション実験と実データを用いた実験によりその有効性を検証する.(著者抄録)