文献
J-GLOBAL ID:202202299448377249   整理番号:22A1920679

強調データの拡張学習によるBiterm Topic Modelの解釈性向上法に関する一考察

A Study on Improving the Interpretability of Biterm Topic Model by Learning of Emphasized Data Augmentation
著者 (4件):
資料名:
巻: 36th  ページ: ROMBUNNO.3E3-GS-2-02(J-STAGE)  発行年: 2022年 
JST資料番号: U1701A  ISSN: 2758-7347  資料種別: 会議録 (C)
記事区分: 短報  発行国: 日本 (JPN)  言語: 日本語 (JA)
抄録/ポイント:
抄録/ポイント
文献の概要を数百字程度の日本語でまとめたものです。
部分表示の続きは、JDreamⅢ(有料)でご覧頂けます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。
ECサイトには,購買数の少ないライトユーザが大多数を占めるサイトが数多く存在する.こうしたライトユーザばかりの購買履歴データに対して,Latent Dirichlet Allocationなどのトピックモデルを適用した場合,ユーザごとの少ない購買データからトピックを推定するため,推定精度が低下してしまう.そこで,Biterm Topic Model(BTM)が提案されている.BTMは,ユーザの購買履歴に含まれる2つのアイテムのペア(バイターム)に同一のトピックを仮定したモデルであり,同時購買確率が高いバイタームを重視してトピックを学習する.しかし,多くのユーザに購入される人気アイテム同士も共起する確率が高くなる場合がある.実際には,同時購買確率は低くとも,アイテムAが購買されたもとでアイテムBが購買される条件付購買確率が高いバイタームの方が,マーケティング施策立案などのビジネス目的では重要性が高い.そこで,本研究では,条件付購買確率が高いアイテムのペアを関連性のあるバイタームと定義し,これらを重視した新たな学習方法を提案する.加えて,人工データと実データに対して提案手法の有効性を検証する.(著者抄録)
シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

準シソーラス用語:
シソーラス用語/準シソーラス用語
文献のテーマを表すキーワードです。
部分表示の続きはJDreamⅢ(有料)でご覧いただけます。
J-GLOBALでは書誌(タイトル、著者名等)登載から半年以上経過後に表示されますが、医療系文献の場合はMyJ-GLOBALでのログインが必要です。

分類 (3件):
分類
JSTが定めた文献の分類名称とコードです
人工知能  ,  その他の情報処理  ,  自然語処理 
タイトルに関連する用語 (2件):
タイトルに関連する用語
J-GLOBALで独自に切り出した文献タイトルの用語をもとにしたキーワードです

前のページに戻る