Art
J-GLOBAL ID:201902289248766750   Reference number:19A0604849

Text Segmentation for Japanese Historical Documents using Fully Convolutional Neural Network

完全畳込みニューラルネットワークを用いた日本の歴史的文書のためのテキストセグメンテーション
Author (5):
Material:
Volume: 2019  Issue: CH-119  Page: Vol.2019-CH-119,No.3,1-5 (WEB ONLY)  Publication year: Feb. 09, 2019 
JST Material Number: U0451A  Document type: Proceedings
Article type: 原著論文  Country of issue: Japan (JPN)  Language: ENGLISH (EN)
Thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.

Semi thesaurus term:
Thesaurus term/Semi thesaurus term
Keywords indexed to the article.
All keywords is available on JDreamIII(charged).
On J-GLOBAL, this item will be available after more than half a year after the record posted. In addtion, medical articles require to login to MyJ-GLOBAL.

JST classification (4):
JST classification
Category name(code) classified by JST.
Pattern recognition  ,  Artificial intelligence  ,  Natural language processing  ,  I/O units 
Reference (16):
more...

Return to Previous Page