Rchr
J-GLOBAL ID:200901034268935819   Update date: Jul. 22, 2024

KIMURA Kenichiro

キムラ ケンイチロウ | KIMURA Kenichiro
Affiliation and department:
Job title: Assistant Professor
Research field  (1): Algebra
Research theme for competitive and other funds  (1):
  • Study on K-groups and Chow groups of Algebraic varieties
Papers (19):
  • Kimura,Kenichiro. Semi-algebraic chains on projective varieties and the Abel-Jacobi map for higher Chow cycles. Transactions of the American Mathematical Society. 2021. 374. 11. 7589-7619
  • Kimura, Kenichiro, 花村昌樹, 寺杣友秀. Integrals of logarithmic forms on semi-algebraic sets and a generalized Cauchy formula Part II: generalized Cauchy formula. arXiv:1604.03216. 2017
  • Kimura, Kenichiro, 花村昌樹, 寺杣友秀. Integrals of logarithmic forms on semi-algebraic sets and a generalized Cauchy formula, Part I: convergence theorems. arXiv:1509.06950. 2015
  • Kimura,Kenichiro. The Hodge realization of mixed Tate motives (Hopf algebras and quantum groups : their possible applications). RIMS Kokyuroku. 2013. 1840. 139-148
  • Kenichiro Kimura, Shun-ichi Kimura, Nobuyoshi Takahashi. Motivic zeta functions in additive monoidal categories. JOURNAL OF K-THEORY. 2012. 9. 3. 459-473
more...
Lectures and oral presentations  (7):
  • The Abel-Jacobi map for higher Chow cycles
    (Arithmetic and Algebraic Geometry 2019)
  • The Abel-Jacobi map for higher Chow cycles
    (Working Workshop on Calabi-Yau Varieties and Related Topics 2018)
  • Hodge realization of Bloch-Kriz mixed Tate motives via integral of logarithmic forms
    (Regulators in Niseko 2017 2017)
  • Hodge realization of Bloch-Kriz mixed Tate motives via integral of logarithmic forms
    (第12回代数・解析・幾何学セミナー 2017)
  • Hodge realization of mixed Tate motives
    (ホップ代数と量子群-応用 の可能性 2012)
more...
Education (2):
  • - 1996 The University of Tokyo Graduate School, Division of Mathematical Sciences
  • - 1991 The University of Tokyo Faculty of Science
Association Membership(s) (1):
日本数学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page