Research keywords (5):
combinatorial algebra
, toric variety
, moduli space
, group action
, group action
Research theme for competitive and other funds (5):
2022 - 2026 代数学の作用を受ける代数多様体の研究
2011 - 2014 A study of the algebraic varieties with an algebraic group action
2005 - 2008 Research on algebraic varieties with an algebraic group action
1994 - 1995 非可解代数群の作用を受ける代数多様体の研究
1993 - 1994 代数群の作用を受ける代数多様体の研究
Papers (17):
Tetsuo Nakano, Miku Shindou, Naoki Mikoshiba, Tsukasa Yoshihara. The SMYI Invariant and the MDSL Conjecture in the CII Algorithm for Solving Sudoku Puzzles. Far East Journal of Applied Mathematics. 2022. 114. 25-48
T. Nakano, Y. Maruyama and S. Ohki. On the mathematical evaluation of difficulty level of Sudoku puzzles by Boolena Groebner bases. Far East Journal of Applied Mathematics. 2020. 106. 43-70
Tetsuo Nakano, Sayaka Minami, Satoshi Harikae, Kenji Arai, Hiromasa Watanabe, Yoshimune Tonegawa. On the Inoue invariants of the puzzles of Sudoku type II. Bulliten of JSSAC. 2018. 24. 2. 77-90
Tetsuo Nakano. On the moduli space of pointed algebraic curves of low genus III --positive characteristic--. Tokyo Journal of Mathematics. 2016. 39. 2. 565-582
K. Arai, H. Watanabe. On the Inoue invariants of the puzzles of Sudoku type. Communications of JSSAC. 2016. 2. 1-14