• A
  • A
  • A
日本語 Help
Science and technology information site for articles, patents, researchers information, etc.
Rchr
J-GLOBAL ID:201101047508032946   Update date: Apr. 10, 2025

Abe Hiraku

アベ ヒラク | Abe Hiraku
Affiliation and department:
Research field  (1): Geometry
Research keywords  (7): Hessenberg varieties ,  Transformation groups ,  Schubert calculus ,  Toric varieties ,  Algebraic geometry ,  Algebraic topology ,  Combinatorics
Research theme for competitive and other funds  (8):
  • 2023 - 2028 ヘッセンバーグ多様体とトーリック幾何の繋がり
  • 2022 - 2023 Hessenberg多様体の幾何学と組み合わせ論
  • 2020 - 2022 Hessenberg多様体のトポロジーと組合せ論
  • 2018 - 2022 ヘッセンバーグ多様体の族と可積分系
  • 2019 - 2020 トーラス群作用の幾何とトポロジー
Show all
Papers (17):
  • Hiraku Abe, Haozhi Zeng. Totally nonnegative part of the Peterson variety in Lie type A. Math. Z. 2025. 309. 71
  • Hiraku Abe, Erik Insko. On singularity and normality of regular nilpotent Hessenberg varieties. J. Algebra. 2024. 651. 70-110
  • Hiraku Abe, Tatsuya Horiguchi, Hideya Kuwata, Haozhi Zeng. Geometry of Peterson Schubert calculus in type A and left-right diagrams. Algebr. Comb. 2024. 7. 2. 383-412
  • Hiraku Abe, Naoki Fujita, Haozhi Zeng. Fano and Weak Fano Hessenberg Varieties. Michigan Math. J. 2023. 73. 3. 511-555
  • Hiraku Abe, Tatsuya Horiguchi. A survey of recent developments on Hessenberg varieties. Schubert calculus and its applications in combinatorics and representation theory. 2020. 251-279
more...
MISC (7):
  • Hiraku Abe, Haozhi Zeng. Peterson varieties and toric orbifolds associated to Cartan matrices. 2023
  • 阿部拓. A型Peterson Schubert calculusの幾何と計算. 数理解析研究所講究録. 2022. 2231. 54-59
  • Hiraku Abe, Haozhi Zeng. The integral cohomology rings of Peterson varieties in type A. arXiv:2203.02629. 2022
  • 阿部拓. 旗多様体上のあるベクトル束に現れる 正則Poisson構造と完全可積分系について. 数理解析研究所講究録. 2018. 2098. 76-82
  • 阿部 拓. ルート系から定まるトーリック多様体上の交叉数とヤング図 (変換群の位相幾何と代数構造). 数理解析研究所講究録. 2014. 1922. 78-83
more...
Books (1):
  • トゥー多様体
    裳華房 2019 ISBN:9784785315863
Lectures and oral presentations  (79):
  • Divisors on regular Hessenberg varieties for h=(2, 3, 4, ..., n, n)
    (The 7th Korea Toric Topology Workshop (KAIST) 2025)
  • Peterson varieties and toric geometry
    (Superspace coinvariants, hyperplane arrangements and Hessenberg varieties (Waseda University) 2024)
  • Peterson variety and toric geometry
    (Workshop on toric topology 2024 in Shanghai (online) 2024)
  • Peterson variety とトーリック幾何
    (AGU 表現論セミナー 表現論のランドスケープ (青山学院大学) 2024)
  • Line bundles over regular semisimple Hessenberg variety for h=(2,3,4,...,n,n)
    (TGTC workshop 2024 in Himeji (Egret Himeji) 2024)
more...
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page