• A
  • A
  • A
日本語 Help
Science and technology information site for articles, patents, researchers information, etc.
Rchr
J-GLOBAL ID:201401084830567981   Update date: Apr. 18, 2025

Tanigawa Shinichi

Tanigawa Shinichi
Affiliation and department:
Research field  (1): Mathematical informatics
Research theme for competitive and other funds  (10):
  • 2024 - 2030 非正曲率空間上の次世代凸最適化
  • 2021 - 2023 工学システム解析に現れるシンボリック行列に対する離散構造論の展開
  • 2018 - 2022 Combinatorial analysis of the solution spaces of systems of polynomial equations
  • 2015 - 2019 Graph realization problem and graph rigidity
  • 2013 - 2019 Developments of discrete optimization theory and efficient algorithms based on submodular structures
Show all
Papers (76):
  • Daniel Zelazo, Shin-ichi Tanigawa, Bernd Schulze. Forced Symmetric Formation Control. IEEE Transactions on Control of Network Systems. 2025. 1-12
  • James Cruickshank, Bill Jackson, Shinichi Tanigawa. Rigidity of Symmetric Simplicial Complexes and the Lower Bound Theorem. Forum of Mathematics, Sigma. 2025. 13. e4
  • James Cruickshank, Bill Jackson, Shin ichi Tanigawa. Global rigidity of triangulated manifolds. Advances in Mathematics. 2024. 458
  • Bill Jackson, Shin ichi Tanigawa. Maximal matroids in weak order posets. Journal of Combinatorial Theory. Series B. 2024. 165. 20-46
  • James Cruickshank, Fatemeh Mohammadi, Harshit J. Motwani, Anthony Nixon, Shin Ichi Tanigawa. GLOBAL RIGIDITY OF LINE CONSTRAINED FRAMEWORKS. SIAM Journal on Discrete Mathematics. 2024. 38. 1. 743-763
more...
MISC (24):
  • 加藤直樹, 谷川 眞一. 組合せ剛性理論に基づく構造物列挙. 電子情報通信学会誌. 2012. 95. 498-504
  • 谷川眞一. グラフの剛性とマトロイド. 数理解析研究所公開講座 平成24 年7 月30 日から8 月3 日(第34 回) 受講者数91(延べ312). 2012
  • Hiro Ito, Shin-ichi Tanigawa, Yuichi Yoshida. Testing graph rigidity in constant time. Proc. 4th Annual Meeting of Asian Association for Algorithms and Computation (AAAC). 2011
  • HIGASHIKAWA Yuya, KATOH Naoki, TANIGAWA Shin-ichi, LANGERMAN Stefan. Online graph exploration algorithms for cycles and trees by multiple number of searchers. IEICE technical report. 2010. 109. 465. 49-56
  • KATOH Naoki, TANIGAWA Shin-ichi. A Rooted-forest Partition with Uniform Vertex Demand and Its Application to the Rigidity Theory. IEICE technical report. 2009. 109. 195. 43-50
more...
Books (2):
  • Encyclopedia of Algorithms
    Springer 2014
  • 応用数理ハンドブック
    朝倉書店 2013
Lectures and oral presentations  (35):
  • Identifiability of generic point configurations from non-generic measurements
    (MFO-RIMS Tandem Workshop: Optimization, Theoretical Computer Science and Algebraic Geometry: Convexity and Beyond 2025)
  • 低階数テンソル補完の離散構造
    (日本OR学会RAMPシンポジウム 2024)
  • d-dimensional Algebraic Connectivity
    (ICMS Knowledge Exchange Workshop on Geometric Rigidity, Graphic Statics and Engineering 2024)
  • Uniqueness of Low Rank Tensor Completions via Rigidity Theory
    (Rigidity in Action, Special Semester on Rigidity and Flexibility, Johann Radon Institute for Computational and Applied Mathematics 2024)
  • Generic global rigidity in Lp-space
    (Landscapes of Rigidity, Special Semester on Rigidity and Flexibility, Johann Radon Institute for Computational and Applied Mathematics 2024)
more...
Education (4):
  • 2007 - 2010 Kyoto University Graduate School of Engineering Department of Architecture and Architectual Systems Engineering
  • 2005 - 2007 Kyoto University Graduate School of Engineering Department of Architecture and Architectual Systems Engineering
  • 2000 - 2005 Kyoto University Faculty of Engineering School of Architecture
  • - 2000 香川県立丸亀高等学校
Work history (6):
  • 2017/04 - 現在 The University of Tokyo The Graduate School of Information Science and Technology Department of Mathematical Informatics
  • 2015/04 - 2017/03 CWI 訪問研究員
  • 2015/04 - 2017/03 Japan Society for the Promotion of Science
  • 2011/06 - 2017/03 Kyoto University Research Institute for Mathematical Sciences
  • 2010/04 - 2011/06 Japan Society for the Promotion of Science
Show all
Awards (1):
  • 2022/09 - 日本オペレーションズ・リサーチ学会 日本オペレーションズ・リサーチ学会研究賞
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page