Rchr
J-GLOBAL ID:201701013530016094   Update date: Sep. 19, 2024

Matsumoto Yuya

マツモト ユウヤ | Matsumoto Yuya
Affiliation and department:
Job title: Junior Associate Professor
Homepage URL  (1): http://yuyamatsumoto.com/
Research field  (1): Algebra
Research theme for competitive and other funds  (4):
  • 2021 - 2026 The arithmetic and moduli of hyper-Kaehler varieties via non-archimedean methods
  • 2020 - 2025 格子、保型形式とK3曲面、エンリケス曲面の研究
  • 2020 - 2024 K3 surfaces and Calabi-Yau varieties from a inseparable viewpoint
  • 2016 - 2023 正標数還元を用いたK3曲面や関連する多様体の研究
Papers (10):
  • Yuya Matsumoto. On μ_n-actions on K3 surfaces in positive characteristic. NAGOYA MATHEMATICAL JOURNAL. 2023. 249. 11-49
  • Yuya Matsumoto. μ_p- and α_p-actions on K3 surfaces in characteristic p. JOURNAL OF ALGEBRAIC GEOMETRY. 2023. 32. 271-322
  • Yuya Matsumoto. Inseparable maps on W_n-valued Ext groups of non-taut rational double point singularities and the height of K3 surfaces. Journal of Commutative Algebra. 2023. 15. 3. 377-404
  • Yuya Matsumoto. Extendability of automorphisms of K3 surfaces. MATHEMATICAL RESEARCH LETTERS. 2023. 30. 3. 821-863
  • Yuya Matsumoto. Degeneration of K3 surfaces with non-symplectic automorphisms. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA. 2023. 150. 227-245
more...
Lectures and oral presentations  (17):
  • 非分離Kummer曲面
    (代数幾何学セミナー 2024)
  • Kummer曲面の非分離類似
    (野田代数幾何学シンポジウム2023 2023)
  • Inseparable analogue of Kummer K3 surfaces
    (正標数体上の代数多様体、および連接層の導来圏に関するワークショップ 2023)
  • Inseparable analogue of Kummer K3 surfaces
    (K3, Enriques Surfaces, and Related Topics 2023)
  • Inseparable analogue of Kummer K3 surfaces
    (p-adic cohomology and arithmetic geometry 2022 2022)
more...
Work history (2):
  • 2016/05/01 - 現在 Nagoya University Graduate School of Mathematics Designated assistant professor
  • Nagoya University Graduate School of Mathematics Designated assistant professor
Awards (1):
  • 2020/09/02 - 2020 MSJ Takebe Katahiro Prize
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page