Rchr
J-GLOBAL ID:201701015145227664
Update date: Feb. 01, 2024
Morita Yosuke
モリタ ヨウスケ | Morita Yosuke
Affiliation and department:
Job title:
Associate Professor
Homepage URL (2):
https://www2.math.kyushu-u.ac.jp/~y-morita/index_ja.html
,
https://www2.math.kyushu-u.ac.jp/~y-morita/
Research field (1):
Geometry
Research keywords (3):
Conley index
, Discontinuous group
, Clifford-Klein form
Research theme for competitive and other funds (3):
- 2019 - 2023 Clifford-Klein forms and Dolbeault cohomology
- 2017 - 2019 Compact Clifford-Klein forms of homogeneous spaces of reductive and nonreductive types
- 2014 - 2017 指数定理と余随伴軌道に関する研究
Papers (8):
-
Yosuke Morita. Conley index theory without index pairs. I: The point-set level theory. Journal of Fixed Point Theory and Applications. 2023. 25. 1. Paper No. 15
-
Yosuke Morita. Cartan Projections of Some Non-reductive Subgroups and Proper Actions on Homogeneous Spaces. Transformation Groups. 2022. (Online First Publication)
-
Yosuke MORITA. Proof of Kobayashi's rank conjecture on Clifford-Klein forms. Journal of the Mathematical Society of Japan. 2019. 71. 4. 1153-1171
-
Yosuke Morita. Semisimple symmetric spaces that do not model any compact manifold. Journal of Lie Theory. 2019. 29. 2. 493-510
-
Yosuke Morita. A cohomological obstruction to the existence of compact Clifford-Klein forms. Selecta Mathematica. 2017. 23. 3. 1931-1953
more...
Lectures and oral presentations (53):
-
On the definition of Conley indices
(Geometry and Topology 2023)
-
Conley index theory and condensed sets
(Arbeitstagung 2023 on Condensed Mathematics 2023)
-
Geometry of Clifford-Klein forms of non-Riemannian homogeneous spaces
(Colloquium (Faculty of Mathematics, Kyushu University) 2023)
-
On a new formulation of Conley index theory
(Geometry-Topology Joint Seminar (Kyushu University) 2023)
-
A new framework for Conley index theory
(Low dimensional topology and number theory XIV 2023)
more...
Professional career (1):
- Ph.D. (Mathematical Sciences) (The University of Tokyo)
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
Return to Previous Page