Rchr
J-GLOBAL ID:201901004696534080   Update date: Jul. 15, 2024

Makoto Minamide

南出(ミナミデ) 真(マコト) | Makoto Minamide
Affiliation and department:
Research field  (1): Algebra
Research theme for competitive and other funds  (7):
  • 2019 - 2022 Study of error terms in analytic number theory
  • 2015 - 2019 non-square free integers and some developments from a new divisor problem
  • 2015 - 2018 The mean value theorem of an arithmetical error term in short intervals and its application
  • 2014 - 2017 On reseaches of several properties of Dirichlet series and its related fields
  • 2012 - 2015 On analytic behaviour of zeta-function and its applications to the arithmetical error term
Show all
Papers (27):
  • D.Banerjee, Y.Fujisawa, T.M. Minamide, Y. Tanigawa. A note on the partial sum of Apostol's M\"obius function. Acta Math. Hungar. 2023. 170. 635-644
  • Jun Furuya, T. Makoto Minamide, Miyu Nakano. A note on the mean square of the greatest divisor of $n$ which is coprime to a fixed integer $k. Indian J. Pure Appl. Math. 2021. 52. 990-1003
  • Debika Banerjee, T. Makoto Minamide, Yoshio Tanigawa. Mean square of double zeta-function. Tokyo Journal of Mathematics. 2021. 44. 83-101
  • Tadaaki Igawa, T.Makoto Minamide, Miyu Nakano. The Pillai-Chowla method for an error term in the mean square of $\delta_{k}(n). Nepali Math. Sci. Rep. 2021. 38. 1. 39-51
  • T.M.Minamide, Y.Tanigawa. Mean square of the derivatives of Hardy's Z-function. J. Math. Anal. Appl. 2020. 485
more...
Lectures and oral presentations  (26):
  • モジュラー群の合同部分群の指数の平均について II
    (日本数学会秋季総合分科会 (東北大学, 対面式) 2023)
  • モジュラー群の合同部分群の指数の平均について
    (日本数学会秋季総合分科会 (北海道大学, 対面式) 2022)
  • ryaku
    (2021)
  • On an error term for the mean square of \delta_{k}(n)
    (2021)
  • On a partial sum of Apostol's M{\"o}bius function
    (2020)
more...
Professional career (1):
  • 博士(数理学) (名古屋大学)
Association Membership(s) (1):
THE MATHEMATICAL SOCIETY OF JAPAN
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page