• A
  • A
  • A
日本語 Help
Science and technology information site for articles, patents, researchers information, etc.
Rchr
J-GLOBAL ID:202101014328339417   Update date: Feb. 13, 2025

Kondo Rintaro

コンドウ リンタロウ | Kondo Rintaro
Homepage URL  (1): https://www.naro.go.jp/laboratory/tarc/introduction/chart/0401/index.html
Research field  (1): Crop production science
Research keywords  (7): 作物学 ,  イネ ,  ダイズ ,  熱画像 ,  群落ガス交換 ,  生育評価 ,  湿害
Research theme for competitive and other funds  (1):
  • 2024 - 2027 熱収支に基づく群落構造を加味したダイズ群落ガス交換センシング手法の開発
Papers (4):
  • Rintaro Kondo, Soshi Tanaka, Kazuhiko Fujisao, Hirotake Miyaji. Effects of depressions and drainage systems on soybean ( Glycine max (L.) Merill) growth during the early growth stages under excess water stress conditions. Plant Production Science. 2024. 27. 4. 283-293
  • Rintaro Kondo, Yu Tanaka, Tatsuhiko Shiraiwa. Predicting rice (Oryza sativa L.) canopy temperature difference and estimating its environmental response in two rice cultivars, ‘Koshihikari’ and ‘Takanari’, based on a neural network. Plant Production Science. 2022. 25. 3. 394-406
  • Yuki Makino, Yoshihiro Hirooka, Koki Homma, Rintaro Kondo, Tian-Sheng Liu, Liang Tang, Tetsuya Nakazaki, Zheng-Jin Xu, Tatsuhiko Shiraiwa. Effect of flag leaf length of erect panicle rice on the canopy structure and biomass production after heading. Plant Production Science. 2021. 25. 1. 1-10
  • Rintaro Kondo, Yu Tanaka, Hiroto Katayama, Koki Homma, Tatsuhiko Shiraiwa. Continuous estimation of rice (Oryza sativa (L.)) canopy transpiration realized by modifying the heat balance model. Biosystems Engineering. 2021. 204. 294-303
MISC (7):
  • None. Japanese Journal of Crop Science. 2025. 94. 1. 88-89
  • None. 2024. 93. 3. 226-227
  • None. 2023. 92. 1. 57-58
  • 近藤 琳太郎, 田中 佑, 白岩 立彦. ニューラルネットワークに基づくイネ群落葉気温差の予測とその環境応答の評価. 第253回日本作物学会講演会要旨集. 2022. 56
  • None. 2020. 89. 1. 48-48
more...
Patents (1):
  • 評価システム、評価システム、評価方法、および評価プログラム
Lectures and oral presentations  (12):
  • The practicality of satellite sensing for soybean vegetation cultivated in a large-scale farm.
    (2024)
  • Development of a technique for evaluating wet stress damages in soybean based on the leaf area model: 1. Parameters of leaf area model for famous cultivars in northeastern Japan.
    (2024)
  • Remote sensing for effects of depressions on soybean growth under wet stress in early growth stages and improvements of soybean growth by drain constructions in converted paddy fields
    (2023)
  • ニューラルネットワークに基づくイネ群落葉気温差の予測とその環境応答の評価
    (日本作物学会第253回講演会 2022)
  • Estimation of Canopy Transpiration Rate in Rice after Heading Stage by Extracting Leaf Temperature in Thermal Images
    (10th Asian Crop Science Association Conference 2021)
more...
Works (1):
  • (お知らせ) 乾田直播での計画的雑草防除を支援する「ノビエ葉齢判定アプリ」を公開
    2025 - 現在
Education (3):
  • 2018 - 2021 Kyoto University Graduate School of Agriculture Division of Agronomy and Horticultural Science
  • 2016 - 2018 Kyoto University Graduate School of Agriculture Division of Agronomy and Horticultural Science
  • 2012 - 2016 Kyoto University Faculty of Agriculture Faculty of Agriculture
Work history (2):
  • 2022/04 - 現在 National Agriculture and Food Research Organization Tohoku Agricultural Research Center, NARO
  • 2021/10 - 2022/03 Kyoto University Graduate School of Agriculture
Association Membership(s) (1):
日本作物学会
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page