Rchr
J-GLOBAL ID:202201007565528691   Update date: Nov. 19, 2024

Nakashima Kazuto

ナカシマ カズト | Nakashima Kazuto
Affiliation and department:
Job title: Associate Professor
Homepage URL  (1): https://kazuto1011.github.io
Research field  (2): Perceptual information processing ,  Intelligent robotics
Research theme for competitive and other funds  (3):
  • 2023 - 2026 Development of a Realistic LiDAR Simulator based on Deep Generative Models
  • 2020 - 2025 Development of garbage collecting robot for marine microplastics
  • 2019 - 2021 複数人称視点に基づく知能化空間の時空間記述とシーン再構成
Papers (22):
  • Kazuto Nakashima, Ryo Kurazume. LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models. ICRA. 2024. 14724-14731
  • Koshi Shibata, Yuki Nishiura, Yusuke Tamaishi, Kohei Matsumoto, Kazuto Nakashima, Ryo Kurazume. Development of a Retrofit Backhoe Teleoperation System Using Cat Command. SII. 2024. 1486-1491
  • Jeongho Ahn, Kazuto Nakashima, Koki Yoshino, Yumi Iwashita, Ryo Kurazume. Learning Viewpoint-Invariant Features for LiDAR-Based Gait Recognition. IEEE Access. 2023. 11. 129749-129762
  • Kazuto Nakashima, Yumi Iwashita, Ryo Kurazume. Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data. IEEE/CVF Winter Conference on Applications of Computer Vision(WACV). 2023. 1256-1266
  • Ryoya Kihara, Qi An, Kensuke Takita, Shu Ishiguro, Kazuto Nakashima, Ryo Kurazume. Analysis of Force Applied to Horizontal and Vertical Handrails with Impaired Motor Function. IEEE/SICE International Symposium on System Integration(SII). 2023. 1-6
more...
MISC (26):
  • Sander Elias Magnussen Helgesen, Kazuto Nakashima, Jim Tørresen, Ryo Kurazume. Fast LiDAR Upsampling using Conditional Diffusion Models. CoRR. 2024. abs/2405.04889
  • Kazuto Nakashima, Ryo Kurazume. LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models. CoRR. 2023. abs/2309.09256
  • 福田健太郎, 中嶋一斗, 玉石祐介, 玉石祐介, 前田龍一, 松本耕平, 倉爪亮. Development of Distributed Sensor Pods for Evaluation of Ground Stiffness and Safety Management at Civil Engineering Fields. ロボティクスシンポジア予稿集. 2023. 28th
  • Kazuto Nakashima, Yumi Iwashita, Ryo Kurazume. Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data. CoRR. 2022. abs/2210.11750
  • 安正鎬, 中嶋一斗, 吉野弘毅, 岩下友美, 岩下友美, 倉爪亮. 3D LiDARセンサの点群投影方式による計測距離と歩行方向に対する歩容認証の頑健性評価. 日本ロボット学会学術講演会予稿集(CD-ROM). 2022. 40th
more...
Education (4):
  • 2017 - 2020 Kyushu University Graduate School of Information Science and Electrical Engineering Department of Advanced Information Technology
  • 2015 - 2017 Kyushu University Graduate School of Information Science and Electrical Engineering Department of Advanced Information Technology
  • 2013 - 2015 Kyushu University School of Engineering
  • 2008 - 2013 Kumamoto National College of Technology
Professional career (1):
  • Ph.D. in Engineering (Kyushu University)
Work history (5):
  • 2024/11 - 現在 Kyushu University Faculty of Information Science and Electrical Engineering Associate Professor
  • 2023/03 - 2024/10 Kyushu University Faculty of Information Science and Electrical Engineering Assistant professor
  • 2021/04 - 2023/02 Kyushu University Faculty of Information Science and Electrical Engineering
  • 2021/01 - 2021/03 Japan Society for the Promotion of Science
  • 2019/04 - 2020/12 Japan Society for the Promotion of Science
Awards (4):
  • 2019/11 - Joint Workshop on Machine Perception and Robotics (MPR) Oral Contribution Award Multi-perspective Image Captioning for Human-Robot Symbiotic Scenes
  • 2018/10 - Joint Workshop on Machine Perception and Robotics (MPR) Best Poster Presentation Award Describing Daily Events in Intelligent Space via Fourth-person Perspective Images
  • 2017/08 - 画像の認識・理解シンポジウム (MIRU) Student Encouragement Award
  • 2017/05 - IEEE International Conference on Robotics and Automation (ICRA) Finalist of Best Service Robotics Award Feasibility Study of IoRT Platform “Big Sensor Box”
Association Membership(s) (4):
The Society of Instrument and Control Engineers (SICE) ,  IEEE Robotics and Automation Society (RAS) ,  The Robotics Society of Japan (RSJ) ,  IEEE
※ Researcher’s information displayed in J-GLOBAL is based on the information registered in researchmap. For details, see here.

Return to Previous Page