Rchr
J-GLOBAL ID:202201018267590033
Update date: Feb. 01, 2024 Kobayashi Shinichi
コバヤシ シンイチ | Kobayashi Shinichi
- Ashay A. Burungale, Shinichi Kobayashi, Kazuto Ota. Rubin’s conjecture on local units in the anticyclotomic tower at inert primes. Annals of Mathematics. 2021. 194. 3
- Kenichi Bannai; Kei Hagihara; Shinichi Kobayashi; Kazuki Yamada; Shuji Yamamoto; Seidai Yasuda. Category of mixed plectic Hodge structures. Asian Journal of Mathematics. 2020
- 小林真一. 反円分拡大の岩澤理論と一般Heegnerサイクル. RIMS講究録別冊. 2020
- 太田和椎, 小林真一. 楕円保型形式に対する反円分岩澤主予想. RIMS別冊講究録 B83. 2020
- Kazuto Ota, Shinichi Kobayashi. Anticyclotomic main conjecture for modular forms and integral Perrin-Riou twists. Proceedings of Iwasawa 2017. 2019
- Kenichi Bannai, Shinichi Kobayashi, Seidai Yasuda. The radius of convergence of the p-adic sigma function. Mathematische Zeitschrift. 2017. 286. 1-2. 751-781
- 小林 真一. The p-adic height pairing on abelian varieties at non-ordinary primes. Iwasawa 2012, Springer. 2016
- 小林 真一, 坂内健一. Integral structures on p-adic Fourier theory. Annales de L'Institut Fourier. 2016. 66. 1. 521-550
- 小林 真一, 山崎隆雄. Torsion points on Jacobian varieties via Anderson's p-adic Soliton Theory. Asian Journal of mathematics. 2016. 20. 2. 323-352
- 小林 真一, 古庄英和, 坂内健一. p-adic Eisenstein-Kronecker series for CM elliptic curves and the Kronecker limit formulas. nagoya mathematical journal. 2015. 219. 269-302
- 小林 真一. The p-adic Gross-Zagier formula for elliptic curves at supersingular primes. Inventiones mathematicae. 2013. 191. 3. 527-629
- 小林 真一, 坂内健一. Algebraic theta functions and p-adic interpolation of Eisenstein-Kronecker numbers. Duke Mathematical Journal. 2010. 153. 2. 229-295
- 小林 真一, 坂内健一, 辻雄. On the de Rham and p-adic realizations of the elliptic polylogarithm for CM elliptic curves. Annales scientifiques de l'École Normale Supérieure. 2010. 43. 2. 185-234
- 小林 真一. An Elementary Proof of the Mazur-Tate-Teitelbaum Conjecture for Elliptic Curves. Documenta mathematica. 2006. Extra Volume, John H. Coates' Sixtieth Birthday. 567-575
- 小林 真一. Iwasawa theory for elliptic curves at supersingular primes. Inventiones mathematicae. 2003. 152. 3. 609-623
- 小林 真一. The local root number of elliptic curves with wild ramification. Mathematische Annalen. 2002. 323. 3. 609-623
Return to Previous Page