Satoshi Naito, Daniel Orr, Daisuke Sagaki. Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds. Advances in Mathematics. 2021. 387
S. Naito, D. Sagaki. Level-zero van der Kallen modules and specialization of nonsymmetric Macdonald polynomials at t = infinity. Transform. Groups. 2020
S. Kato, S. Naito, D. Sagaki. Equivariant K-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula. Duke Math. J. 2020. 169. 13. 2421-2500
内藤 聡, 佐垣 大輔. Mirkovic-Vilonen polytopes lying in a Demazure crystal and an opposite Demazure crystal (Expansion of Combinatorial Representation Theory). 数理解析研究所講究録. 2009. 1647. 19-32
佐垣 大輔, 内藤 聡. Crystal structure of the set of Lakshmibai-Seshadri paths of an arbitrarylevel-zero shape (組合せ論的表現論の世界 RIMS研究集会報告集). 数理解析研究所講究録. 2006. 1497. 130-139
佐垣 大輔, 内藤 聡. Path Model for a Level-Zero Extremal Weight Module over a Quantum Affine Algebra (Combinatorial Aspect of Integrable Systems). 数理解析研究所講究録. 2005. 1429. 12-24
Description of the Chevalley formula for the torus-equivariant quantum K-group of partial flag manifolds of (co-)minuscule type in terms of the parabolic quantum Bruhat graph
(RIMS Workshop "Representation Theory of Algebraic Groups and Quantum Groups" 2019)
A description of the Z[P]-module structure of the K-theory of the finite-dimensional flag manifold in terms of a generalization of LS paths
(OCAMI Workshop "Crystals and Their Generalizations" 2019)
Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
(KIAS Workshop "Quantum K-theory and Related Topics" 2018)
Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
(RIMS 研究集会「組合せ論的表現論の諸相」 2018)
Pieri-Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds
(Workshop "Geometry and Representation Theory at the Interface of Lie Algebras and Quivers" 2018)