Existence conditions for balanced fractional $3^m$ factorial designs of resolution $\mathrm{R}(\{00,10,01,20,11\}). Communications in Statistics-Theory and Methods. 2017. 46. 2. 942-966
On the existence conditions for balanced fractional ${2^m}$ factorial designs of resolution ${\mathrm{R}^\ast (\{1\}|\Omega_\ell)}$ with ${N<\nu_\ell(m)}. International Journal of Statistics and Probability. 2016. 5. 4. 84-101
${\rm E}_{\rm A}^\ast$-optimal balanced third-order designs of resolution $\mathrm{R}^\ast(\{10, 01\})$ with $ N < \nu(m)$ for $3^m$ factorials
(日本数学会 2021)
${\rm E}^\ast$-optimal balanced third-order designs of resolution $\mathrm{R}^\ast(\{10, 01\})$ with $ N < \nu(m)$ for $3^m$ factorials
(日本数学会 (中止) 2020)
${\rm D}^\ast$-optimal balanced third-order designs of resolution $\mathrm{R}^\ast(\{10, 01\})$ with $N < \nu(m)$ for $3^m$ factorials
(日本数学会 2019)
${\rm GA}^\ast$-optimal balanced third-order designs of resolution $\mathrm{R}^\ast(\{10, 01\})$ with $ N < \nu(m)$ for $3^m$ factorials
(日本数学会 2018)
${\rm A}^\ast$-optimal balanced third-order designs of resolution $\mathrm{R}^\ast(\{10, 01\})$ with $ N < \nu(m)$ for $3^m$ factorials
(日本数学会 2017)